Kardashev Scale Wiki
Advertisement
Antikythera mechanism

The Antikythera mechanism is an ancient geared computing device that was used to calculate astronomical positions and that mystified scientists for over a century. Discovered around 1902 by archaeologist Valerios Stais in a shipwreck off the coast of the Greek island Antikythera, the device is thought to have been built about 150–100 B.C. It was described as "a sophisticated piece of machinery consisting of precisely cut dials, pointers and at least thirty interlocking gear wheels; nothing close to its complexity appears again in the historical record for more than a thousand years, until the development of astronomical clocks in medieval Europe", and "by turning the handle on the box you could make time pass forwards or backwards, to see the state of the cosmos today, tomorrow, last Tuesday or a hundred years in the future. Whoever owned this device must have felt like master of the heavens.”

A dial on the front of the device probably carried at least three hands, one indicating the date and the other two indicating the positions of the Sun and the Moon. The device was also probably used to track dates of ancient Olympic games, predict solar eclipses, and indicate other planetary motions. The Moon mechanism uses a special train of bronze gears, two of them linked with a slightly offset axis, to indicate the position and phase of the moon. As is known today from Kepler’s Laws of Planetary Motion, the moon travels at different speeds as it orbits the Earth (e.g. faster when it is closer to the Earth), and this speed differential is modeled by the Antikythera mechanism, even though the ancient Greeks were not aware of the actual elliptical shape of the orbit. Additionally, the Earth travels faster when it is closer to the Sun than when it is far away.

News[]

  • It is claimed that the mechanism was first "started up" on Dec. 22, 178 B.C.
Advertisement